Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

$R^3$ index for four-dimensional $N=2$ field theories (1406.2360v2)

Published 9 Jun 2014 in hep-th

Abstract: In theories with $N=2$ supersymmetry on $R{3,1}$, BPS bound states can decay across walls of marginal stability in the space of Coulomb branch parameters, leading to discontinuities in the BPS indices $\Omega(\gamma,u)$. We consider a supersymmetric index $I$ which receives contributions from 1/2-BPS states, generalizing the familiar Witten index $Tr (-1)F e{-\beta H}$. We expect $I$ to be smooth away from loci where massless particles appear, thanks to contributions from the continuum of multi-particle states. Taking inspiration from a similar phenomenon in the hypermultiplet moduli space of $N=2$ string vacua, we conjecture a formula expressing $I$ in terms of the BPS indices $\Omega(\gamma,u)$, which is continuous across the walls and exhibits the expected contributions from single particle states at large $\beta$. This gives a universal prediction for the contributions of multi-particle states to the index $I$. This index is naturally a function on the moduli space after reduction on a circle, closely related to the canonical hyperk\"ahler metric and hyperholomorphic connection on this space.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.