Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Forward stable eigenvalue decomposition of rank-one modifications of diagonal matrices (1405.7537v2)

Published 29 May 2014 in math.NA

Abstract: We present a new algorithm for solving an eigenvalue problem for a real symmetric matrix which is a rank-one modification of a diagonal matrix. The algorithm computes each eigenvalue and all components of the corresponding eigenvector with high relative accuracy in $O(n)$ operations. The algorithm is based on a shift-and-invert approach. Only a single element of the inverse of the shifted matrix eventually needs to be computed with double the working precision. Each eigenvalue and the corresponding eigenvector can be computed separately, which makes the algorithm adaptable for parallel computing. Our results extend to the complex Hermitian case. The algorithm is similar to the algorithm for solving the eigenvalue problem for real symmetric arrowhead matrices from: N. Jakov\v{c}evi\'{c}~Stor, I. Slapni\v{c}ar and J. L. Barlow, {Accurate eigenvalue decomposition of real symmetric arrowhead matrices and applications}, Lin. Alg. Appl., 464 (2015).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.