Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bulk universality for deformed Wigner matrices (1405.6634v3)

Published 26 May 2014 in math.PR

Abstract: We consider $N\times N$ random matrices of the form $H=W+V$ where $W$ is a real symmetric or complex Hermitian Wigner matrix and $V$ is a random or deterministic, real, diagonal matrix whose entries are independent of $W$. We assume subexponential decay for the matrix entries of $W$, and we choose $V$ so that the eigenvalues of $W$ and $V$ are typically of the same order. For a large class of diagonal matrices $V$, we show that the local statistics in the bulk of the spectrum are universal in the limit of large $N$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.