Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Semiblind Two-Way Training Method for Discriminatory Channel Estimation in MIMO Systems (1405.4626v1)

Published 19 May 2014 in cs.IT, cs.CR, and math.IT

Abstract: Discriminatory channel estimation (DCE) is a recently developed strategy to enlarge the performance difference between a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. Specifically, it makes use of properly designed training signals to degrade channel estimation at the UR which in turn limits the UR's eavesdropping capability during data transmission. In this paper, we propose a new two-way training scheme for DCE through exploiting a whitening-rotation (WR) based semiblind method. To characterize the performance of DCE, a closed-form expression of the normalized mean squared error (NMSE) of the channel estimation is derived for both the LR and the UR. Furthermore, the developed analytical results on NMSE are utilized to perform optimal power allocation between the training signal and artificial noise (AN). The advantages of our proposed DCE scheme are two folds: 1) compared to the existing DCE scheme based on the linear minimum mean square error (LMMSE) channel estimator, the proposed scheme adopts a semiblind approach and achieves better DCE performance; 2) the proposed scheme is robust against active eavesdropping with the pilot contamination attack, whereas the existing scheme fails under such an attack.

Citations (40)

Summary

We haven't generated a summary for this paper yet.