Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generalizing the Kantorovich Metric to Projection-Valued Measures (1405.4406v2)

Published 17 May 2014 in math.FA

Abstract: Given a compact metric space $X$, the collection of Borel probability measures on $X$ can be made into a compact metric space via the Kantorovich metric. We partially generalize this well known result to projection-valued measures. In particular, given a Hilbert space $\mathcal{H}$, we consider the collection of projection-valued measures from $X$ into the projections on $\mathcal{H}$. We show that this collection can be made into a complete and bounded metric space via a generalized Kantorovich metric. However, we add that this metric space is not compact, thereby identifying an important distinction from the classical setting. We have seen recently that this generalized metric has been previously defined by F. Werner in the setting of mathematical physics. To our knowledge, we develop new properties and applications of this metric. Indeed, we use the Contraction Mapping Theorem on this complete metric space of projection-valued measures to provide an alternative method for proving a fixed point result due to P. Jorgensen. This fixed point, which is a projection-valued measure, arises from an iterated function system on $X$, and is related to Cuntz Algebras.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube