Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Exploration-Exploitation in a Multi-Armed-Bandit Problem with Non-stationary Rewards (1405.3316v2)

Published 13 May 2014 in cs.LG, math.OC, math.PR, and stat.ML

Abstract: In a multi-armed bandit (MAB) problem a gambler needs to choose at each round of play one of K arms, each characterized by an unknown reward distribution. Reward realizations are only observed when an arm is selected, and the gambler's objective is to maximize his cumulative expected earnings over some given horizon of play T. To do this, the gambler needs to acquire information about arms (exploration) while simultaneously optimizing immediate rewards (exploitation); the price paid due to this trade off is often referred to as the regret, and the main question is how small can this price be as a function of the horizon length T. This problem has been studied extensively when the reward distributions do not change over time; an assumption that supports a sharp characterization of the regret, yet is often violated in practical settings. In this paper, we focus on a MAB formulation which allows for a broad range of temporal uncertainties in the rewards, while still maintaining mathematical tractability. We fully characterize the (regret) complexity of this class of MAB problems by establishing a direct link between the extent of allowable reward "variation" and the minimal achievable regret. Our analysis draws some connections between two rather disparate strands of literature: the adversarial and the stochastic MAB frameworks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Omar Besbes (17 papers)
  2. Yonatan Gur (7 papers)
  3. Assaf Zeevi (25 papers)
Citations (123)