Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Coordinated Beamforming for Dense Wireless Cooperative Networks (1405.3182v1)

Published 13 May 2014 in cs.IT and math.IT

Abstract: To meet the ever growing demand for both high throughput and uniform coverage in future wireless networks, dense network deployment will be ubiquitous, for which co- operation among the access points is critical. Considering the computational complexity of designing coordinated beamformers for dense networks, low-complexity and suboptimal precoding strategies are often adopted. However, it is not clear how much performance loss will be caused. To enable optimal coordinated beamforming, in this paper, we propose a framework to design a scalable beamforming algorithm based on the alternative direction method of multipliers (ADMM) method. Specifically, we first propose to apply the matrix stuffing technique to transform the original optimization problem to an equivalent ADMM-compliant problem, which is much more efficient than the widely-used modeling framework CVX. We will then propose to use the ADMM algorithm, a.k.a. the operator splitting method, to solve the transformed ADMM-compliant problem efficiently. In particular, the subproblems of the ADMM algorithm at each iteration can be solved with closed-forms and in parallel. Simulation results show that the proposed techniques can result in significant computational efficiency compared to the state- of-the-art interior-point solvers. Furthermore, the simulation results demonstrate that the optimal coordinated beamforming can significantly improve the system performance compared to sub-optimal zero forcing beamforming.

Citations (18)

Summary

We haven't generated a summary for this paper yet.