Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Rank-1 lattice rules for multivariate integration in spaces of permutation-invariant functions: Error bounds and tractability (1405.3156v2)

Published 13 May 2014 in math.NA

Abstract: We study multivariate integration of functions that are invariant under permutations (of subsets) of their arguments. We find an upper bound for the $n$th minimal worst case error and show that under certain conditions, it can be bounded independent of the number of dimensions. In particular, we study the application of unshifted and randomly shifted rank-$1$ lattice rules in such a problem setting. We derive conditions under which multivariate integration is polynomially or strongly polynomially tractable with the Monte Carlo rate of convergence $O(n{-1/2})$. Furthermore, we prove that those tractability results can be achieved with shifted lattice rules and that the shifts are indeed necessary. Finally, we show the existence of rank-$1$ lattice rules whose worst case error on the permutation- and shift-invariant spaces converge with (almost) optimal rate. That is, we derive error bounds of the form $O(n{-\lambda/2})$ for all $1 \leq \lambda < 2 \alpha$, where $\alpha$ denotes the smoothness of the spaces. Keywords: Numerical integration, Quadrature, Cubature, Quasi-Monte Carlo methods, Rank-1 lattice rules.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.