Papers
Topics
Authors
Recent
Search
2000 character limit reached

Maximal Entanglement - A New Measure of Entanglement

Published 11 May 2014 in quant-ph, cs.IT, and math.IT | (1405.2502v1)

Abstract: Maximal correlation is a measure of correlation for bipartite distributions. This measure has two intriguing features: (1) it is monotone under local stochastic maps; (2) it gives the same number when computed on i.i.d. copies of a pair of random variables. This measure of correlation has recently been generalized for bipartite quantum states, for which the same properties have been proved. In this paper, based on maximal correlation, we define a new measure of entanglement which we call maximal entanglement. We show that this measure of entanglement is faithful (is zero on separable states and positive on entangled states), is monotone under local quantum operations, and gives the same number when computed on tensor powers of a bipartite state.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.