Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving the minimum labelling spanning tree problem using intelligent optimization (1201.2320v4)

Published 11 Jan 2012 in math.OC, cs.DM, and math.CO

Abstract: Given a connected, undirected graph whose edges are labelled (or coloured), the minimum labelling spanning tree (MLST) problem seeks a spanning tree whose edges have the smallest number of distinct labels (or colours). In recent work, the MLST problem has been shown to be NP-hard and some effective heuristics have been proposed and analyzed. In this paper we present an intelligent optimization algorithm to solve the problem. It is obtained by the basic Variable Neighbourhood Search heuristic with the integration of other complements from machine learning, statistics and experimental algorithmics, in order to produce high-quality performance and to completely automate the resulting optimization strategy. We present experimental results on randomly generated graphs with different statistical properties, showing the crucial effects of the implementation, the robustness, and the empirical scalability of our intelligent algorithm. Furthermore, the computational experiments show that the proposed strategy outperforms the heuristics recommended in the literature and is able to obtain optimal or near-optimal solutions in short computational running time.

Summary

We haven't generated a summary for this paper yet.