Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Ice quivers with potential arising from once-punctured polygons and Cohen-Macaulay modules (1404.7269v3)

Published 29 Apr 2014 in math.RT

Abstract: Given a tagged triangulation of a once-punctured polygon $P*$ with $n$ vertices, we associate an ice quiver with potential such that the frozen part of the associated frozen Jacobian algebra has the structure of a Gorenstein $K[X]$-order $\Lambda$. Then we show that the stable category of the category of Cohen-Macaulay $\Lambda$-modules is equivalent to the cluster category $\mathcal{C}$ of type $D_n$. It gives a natural interpretation of the usual indexation of cluster tilting objects of $\mathcal{C}$ by tagged triangulations of $P*$. Moreover, it extends naturally the triangulated categorification by $\mathcal{C}$ of the cluster algebra of type $D_n$ to an exact categorification by adding coefficients corresponding to the sides of $P$. Finally, we lift the previous equivalence of categories to an equivalence between the stable category of graded Cohen-Macaulay $\Lambda$-modules and the bounded derived category of modules over a path algebra of type $D_n$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.