Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Equivalence of Non-Equilibrium Ensembles and Representation of Friction in Turbulent Flows: The Lorenz 96 Model (1404.6638v2)

Published 26 Apr 2014 in cond-mat.stat-mech, nlin.CD, physics.comp-ph, and physics.flu-dyn

Abstract: We construct different equivalent non-equilibrium statistical ensembles in a simple yet instructive $N$-degrees of freedom model of atmospheric turbulence, introduced by Lorenz in 1996. The vector field can be decomposed into an energy-conserving, time-reversible part, plus a non-time reversible part, including forcing and dissipation. We construct a modified version of the model where viscosity varies with time, in such a way that energy is conserved, and the resulting dynamics is fully time-reversible. For each value of the forcing, the statistical properties of the irreversible and reversible model are in excellent agreement, if in the latter the energy is kept constant at a value equal to the time-average realized with the irreversible model. In particular, the average contraction rate of the phase space of the time-reversible model agrees with that of the irreversible model, where instead it is constant by construction. We also show that the phase space contraction rate obeys the fluctuation relation, and we relate its finite time corrections to the characteristic time scales of the system. A local version of the fluctuation relation is explored and successfully checked. The equivalence between the two non-equilibrium ensembles extends to dynamical properties such as the Lyapunov exponents, which are shown to obey to a good degree of approximation a pairing rule. These results have relevance in motivating the importance of the chaotic hypothesis. in explaining that we have the freedom to model non-equilibrium systems using different but equivalent approaches, and, in particular, that using a model of a fluid where viscosity is kept constant is just one option, and not necessarily the only option, for describing accurately its statistical and dynamical properties.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube