Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A dimension reduction approach to edge weight estimation for use in spatial models (2407.02684v1)

Published 2 Jul 2024 in stat.ME and stat.AP

Abstract: Models for areal data are traditionally defined using the neighborhood structure of the regions on which data are observed. The unweighted adjacency matrix of a graph is commonly used to characterize the relationships between locations, resulting in the implicit assumption that all pairs of neighboring regions interact similarly, an assumption which may not be true in practice. It has been shown that more complex spatial relationships between graph nodes may be represented when edge weights are allowed to vary. Christensen and Hoff (2023) introduced a covariance model for data observed on graphs which is more flexible than traditional alternatives, parameterizing covariance as a function of an unknown edge weights matrix. A potential issue with their approach is that each edge weight is treated as a unique parameter, resulting in increasingly challenging parameter estimation as graph size increases. Within this article we propose a framework for estimating edge weight matrices that reduces their effective dimension via a basis function representation of of the edge weights. We show that this method may be used to enhance the performance and flexibility of covariance models parameterized by such matrices in a series of illustrations, simulations and data examples.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com