Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Weighted Correlation Index for Rankings with Ties (1404.3325v3)

Published 12 Apr 2014 in cs.SI and cs.IR

Abstract: Understanding the correlation between two different scores for the same set of items is a common problem in information retrieval, and the most commonly used statistics that quantifies this correlation is Kendall's $\tau$. However, the standard definition fails to capture that discordances between items with high rank are more important than those between items with low rank. Recently, a new measure of correlation based on average precision has been proposed to solve this problem, but like many alternative proposals in the literature it assumes that there are no ties in the scores. This is a major deficiency in a number of contexts, and in particular while comparing centrality scores on large graphs, as the obvious baseline, indegree, has a very large number of ties in web and social graphs. We propose to extend Kendall's definition in a natural way to take into account weights in the presence of ties. We prove a number of interesting mathematical properties of our generalization and describe an $O(n\log n)$ algorithm for its computation. We also validate the usefulness of our weighted measure of correlation using experimental data.

Citations (89)

Summary

We haven't generated a summary for this paper yet.