Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Poisson polyhedra in high dimensions (1403.8017v2)

Published 31 Mar 2014 in math.MG and math.PR

Abstract: The zero cell of a parametric class of random hyperplane tessellations depending on a distance exponent and an intensity parameter is investigated, as the space dimension tends to infinity. The model includes the zero cell of stationary and isotropic Poisson hyperplane tessellations as well as the typical cell of a stationary Poisson Voronoi tessellation as special cases. It is shown that asymptotically in the space dimension, with overwhelming probability these cells satisfy the hyperplane conjecture, if the distance exponent and the intensity parameter are suitably chosen dimension-dependent functions. Also the high dimensional limits of the mean number of faces are explored and the asymptotic behaviour of an isoperimetric ratio is analysed. In the background are new identities linking the $f$-vector of the zero cell to certain dual intrinsic volumes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube