Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Class of Mean-field LQG Games with Partial Information (1403.5859v1)

Published 24 Mar 2014 in math.OC

Abstract: The large-population system consists of considerable small agents whose individual behavior and mass effect are interrelated via their state-average. The mean-field game provides an efficient way to get the decentralized strategies of large-population system when studying its dynamic optimizations. Unlike other large-population literature, this current paper possesses the following distinctive features. First, our setting includes the partial information structure of large-population system which is practical from real application standpoint. Specially, two cases of partial information structure are considered here: the partial filtration case (see Section 2, 3) where the available information to agents is the filtration generated by an observable component of underlying Brownian motion; the noisy observation case (Section 4) where the individual agent can access an additive white-noise observation on its own state. Also, it is new in filtering modeling that our sensor function may depend on the state-average. Second, in both cases, the limiting state-averages become random and the filtering equations to individual state should be formalized to get the decentralized strategies. Moreover, it is also new that the limit average of state filters should be analyzed here. This makes our analysis very different to the full information arguments of large-population system. Third, the consistency conditions are equivalent to the wellposedness of some Riccati equations, and do not involve the fixed-point analysis as in other mean-field games. The $\epsilon$-Nash equilibrium properties are also presented.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.