Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Capacity of a Nonlinear Optical Channel with Finite Memory (1403.3339v1)

Published 13 Mar 2014 in cs.IT, math.IT, and physics.optics

Abstract: The channel capacity of a nonlinear, dispersive fiber-optic link is revisited. To this end, the popular Gaussian noise (GN) model is extended with a parameter to account for the finite memory of realistic fiber channels. This finite-memory model is harder to analyze mathematically but, in contrast to previous models, it is valid also for nonstationary or heavy-tailed input signals. For uncoded transmission and standard modulation formats, the new model gives the same results as the regular GN model when the memory of the channel is about 10 symbols or more. These results confirm previous results that the GN model is accurate for uncoded transmission. However, when coding is considered, the results obtained using the finite-memory model are very different from those obtained by previous models, even when the channel memory is large. In particular, the peaky behavior of the channel capacity, which has been reported for numerous nonlinear channel models, appears to be an artifact of applying models derived for independent input in a coded (i.e., dependent) scenario.

Citations (105)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.