Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On moment sequences and mixed Poisson distributions (1403.2712v5)

Published 11 Mar 2014 in math.CO and math.PR

Abstract: In this article we survey properties of mixed Poisson distributions and probabilistic aspects of the Stirling transform: given a non-negative random variable $X$ with moment sequence $(\mu_s){s\in\mathbb{N}}$ we determine a discrete random variable $Y$, whose moment sequence is given by the Stirling transform of the sequence $(\mu_s){s\in\mathbb{N}}$, and identify the distribution as a mixed Poisson distribution. We discuss properties of this family of distributions and present a simple limit theorem based on expansions of factorial moments instead of power moments. Moreover, we present several examples of mixed Poisson distributions in the analysis of random discrete structures, unifying and extending earlier results. We also add several entirely new results: we analyse triangular urn models, where the initial configuration or the dimension of the urn is not fixed, but may depend on the discrete time $n$. We discuss the branching structure of plane recursive trees and its relation to table sizes in the Chinese restaurant process. Furthermore, we discuss root isolation procedures in Cayley-trees, a parameter in parking functions, zero contacts in lattice paths consisting of bridges, and a parameter related to cyclic points and trees in graphs of random mappings, all leading to mixed Poisson-Rayleigh distributions. Finally, we indicate how mixed Poisson distributions naturally arise in the critical composition scheme of Analytic Combinatorics.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.