Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Janus configurations with SL(2,Z)-duality twists, Strings on Mapping Tori, and a Tridiagonal Determinant Formula (1403.2365v3)

Published 10 Mar 2014 in hep-th

Abstract: We develop an equivalence between two Hilbert spaces: (i) the space of states of $U(1)n$ Chern-Simons theory with a certain class of tridiagonal matrices of coupling constants (with corners) on $T2$; and (ii) the space of ground states of strings on an associated mapping torus with $T2$ fiber. The equivalence is deduced by studying the space of ground states of $SL(2,Z)$-twisted circle compactifications of $U(1)$ gauge theory, connected with a Janus configuration, and further compactified on $T2$. The equality of dimensions of the two Hilbert spaces (i) and (ii) is equivalent to a known identity on determinants of tridiagonal matrices with corners. The equivalence of operator algebras acting on the two Hilbert spaces follows from a relation between the Smith normal form of the Chern-Simons coupling constant matrix and the isometry group of the mapping torus, as well as the torsion part of its first homology group.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.