Renyi Entropy and Geometry (1403.1580v2)
Abstract: Entanglement entropy in even dimensional conformal field theories (CFTs) contains well-known universal terms arising from the conformal anomaly. Renyi entropies are natural generalizations of the entanglement entropy that are much less understood. Above two spacetime dimensions, the universal terms in the Renyi entropies are unknown for general entangling geometries. We conjecture a new structure in the dependence of the four-dimensional Renyi entropies on the intrinsic and extrinsic geometry of the entangling surface. We provide evidence for this conjecture by direct numerical computations in the free scalar and fermion field theories. The computation involves relating the four-dimensional free massless Renyi entropies across cylindrical entangling surfaces to corresponding three-dimensional massive Renyi entropies across circular entangling surfaces. Our numerical technique also allows us to directly probe other interesting aspects of three-dimensional Renyi entropy, including the massless renormalized Renyi entropy and calculable contributions to the perimeter law.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.