Papers
Topics
Authors
Recent
2000 character limit reached

$τ^2$-stable tilting complexes over weighted projective lines

Published 25 Feb 2014 in math.RT | (1402.6036v2)

Abstract: Let $\mathbb{X}$ be a weighted projective line and $\operatorname{coh}\mathbb{X}$ the associated categoy of coherent sheaves. We classify the tilting complexes $T$ in $Db(\operatorname{coh}\mathbb{X})$ such that $\tau2 T\cong T$, where $\tau$ is the Auslander-Reiten translation in $Db(\operatorname{coh}\mathbb{X})$. As an application of this result, we classify the 2-representation-finite algebras which are derived-equivalent to a canonical algebra. This complements Iyama-Oppermann's classification of the iterated tilted 2-representation-finite algebras. By passing to 3-preprojective algebras, we obtain a classification of the selfinjective cluster-tilted algebras of canonical-type. This complements Ringel's classification of the selfinjective cluster-tilted algebras.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.