Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Group-sparse Matrix Recovery (1402.5077v1)

Published 20 Feb 2014 in cs.LG, cs.CV, and stat.ML

Abstract: We apply the OSCAR (octagonal selection and clustering algorithms for regression) in recovering group-sparse matrices (two-dimensional---2D---arrays) from compressive measurements. We propose a 2D version of OSCAR (2OSCAR) consisting of the $\ell_1$ norm and the pair-wise $\ell_{\infty}$ norm, which is convex but non-differentiable. We show that the proximity operator of 2OSCAR can be computed based on that of OSCAR. The 2OSCAR problem can thus be efficiently solved by state-of-the-art proximal splitting algorithms. Experiments on group-sparse 2D array recovery show that 2OSCAR regularization solved by the SpaRSA algorithm is the fastest choice, while the PADMM algorithm (with debiasing) yields the most accurate results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.