Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Particle in a field of two centers in prolate spheroidal coordinates: integrability and solvability (1402.3816v1)

Published 16 Feb 2014 in math-ph, math.MP, nlin.SI, and quant-ph

Abstract: We analyze one particle, two-center quantum problems which admit separation of variables in prolate spheroidal coordinates, a natural restriction satisfied by the H$_2+$ molecular ion. The symmetry operator is constructed explicitly. We give the details of the Hamiltonian reduction of the 3D system to a 2D system with modified potential that is separable in elliptic coordinates. The potentials for which there is double-periodicity of the Schr\"odinger operator in the space of prolate spheroidal coordinates, including one for the H$_2+$ molecular ion, are indicated. We study possible potentials that admit exact-solvability is as well as all models known to us with the (quasi)-exact-solvability property for the separation equations. We find deep connections between second-order superintegrable and conformally superintegrable systems and these tractable problems. In particular we derive a general 4-parameter expression for a model potential that is always integrable and is conformally superintegrable for some parameter choices.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.