Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hierarchical Temporal Memory Based on Spin-Neurons and Resistive Memory for Energy-Efficient Brain-Inspired Computing

Published 10 Feb 2014 in cs.ET and cond-mat.dis-nn | (1402.2902v1)

Abstract: Hierarchical temporal memory (HTM) tries to mimic the computing in cerebral-neocortex. It identifies spatial and temporal patterns in the input for making inferences. This may require large number of computationally expensive tasks like, dot-product evaluations. Nano-devices that can provide direct mapping for such primitives are of great interest. In this work we show that the computing blocks for HTM can be mapped using low-voltage, fast-switching, magneto-metallic spin-neurons combined with emerging resistive cross-bar network (RCN). Results show possibility of more than 200x lower energy as compared to 45nm CMOS ASIC design

Citations (64)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.