Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Second-order Bound with Excess Losses (1402.2044v1)

Published 10 Feb 2014 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We study online aggregation of the predictions of experts, and first show new second-order regret bounds in the standard setting, which are obtained via a version of the Prod algorithm (and also a version of the polynomially weighted average algorithm) with multiple learning rates. These bounds are in terms of excess losses, the differences between the instantaneous losses suffered by the algorithm and the ones of a given expert. We then demonstrate the interest of these bounds in the context of experts that report their confidences as a number in the interval [0,1] using a generic reduction to the standard setting. We conclude by two other applications in the standard setting, which improve the known bounds in case of small excess losses and show a bounded regret against i.i.d. sequences of losses.

Citations (142)

Summary

We haven't generated a summary for this paper yet.