Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Generalized Online Algorithm for Translation and Scale Invariant Prediction with Expert Advice (2009.04372v1)

Published 9 Sep 2020 in cs.LG and stat.ML

Abstract: In this work, we aim to create a completely online algorithmic framework for prediction with expert advice that is translation-free and scale-free of the expert losses. Our goal is to create a generalized algorithm that is suitable for use in a wide variety of applications. For this purpose, we study the expected regret of our algorithm against a generic competition class in the sequential prediction by expert advice problem, where the expected regret measures the difference between the losses of our prediction algorithm and the losses of the 'best' expert selection strategy in the competition. We design our algorithm using the universal prediction perspective to compete against a specified class of expert selection strategies, which is not necessarily a fixed expert selection. The class of expert selection strategies that we want to compete against is purely determined by the specific application at hand and is left generic, which makes our generalized algorithm suitable for use in many different problems. We show that no preliminary knowledge about the loss sequence is required by our algorithm and its performance bounds, which are second order, expressed in terms of sums of squared losses. Our regret bounds are stable under arbitrary scalings and translations of the losses.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kaan Gokcesu (35 papers)
  2. Hakan Gokcesu (39 papers)