Papers
Topics
Authors
Recent
2000 character limit reached

Precise estimation of critical exponents from real-space renormalization group analysis

Published 4 Feb 2014 in cond-mat.stat-mech and quant-ph | (1402.0619v1)

Abstract: We develop a novel real-space renormalization group (RG) scheme which accurately estimates correlation length exponent $\nu$ near criticality of higher-dimensional quantum Ising and Potts models in a transverse field. Our method is remarkably simple (often analytical), grouping only a few spins into a block spin so that renormalized Hamiltonian has a closed form. A previous difficulty of spatial anisotropy and unwanted terms is avoided by incorporating rotational invariance and internal $\mathbb{Z}_q$ symmetries of the Hamiltonian. By applying this scheme to the (2+1)-dim Ising model on a triangular lattice and solving an analytical RG equation, we obtain $\nu\approx 0.6300$. This value is within statistical errors of the current best Monte-Carlo result, 25th-order high-temperature series expansions, $\phi4$-theory estimation which considers up to seven-loop corrections and experiments performed in low-Earth orbits. We also apply the scheme to higher-dimensional Potts models for which ordinary Monte-Carlo methods are not effective due to strong hysteresis and suppression of quantum fluctuation in a weak first-order phase transition.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.