Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 188 tok/s Pro
2000 character limit reached

Universal low-energy behavior in three-body systems (1401.6386v2)

Published 24 Jan 2014 in math-ph and math.MP

Abstract: We consider a pairwise interacting quantum 3-body system in 3-dimensional space with finite masses and the interaction term $V_{12} + \lambda(V_{13} + V_{23})$, where all pair potentials are assumed to be nonpositive. The pair interaction of the particles ${1,2}$ is tuned to make them have a zero energy resonance and no negative energy bound states. The coupling constant $\lambda >0$ is allowed to take the values for which the particle pairs ${1,3}$ and ${2,3}$ have no bound states with negative energy. Let $\lambda_{cr}$ denote the critical value of the coupling constant such that $E(\lambda) \to -0$ for $\lambda \to \lambda_{cr}$, where $E(\lambda)$ is the ground state energy of the 3-body system. We prove the theorem, which states that near $\lambda_{cr}$ one has $E(\lambda) = C (\lambda-\lambda_{cr})[\ln (\lambda-\lambda_{cr})]{-1}+$h.t., where $C$ is a constant and h.t. stands for "higher terms". This behavior of the ground state energy is universal (up to the value of the constant $C$), meaning that it is independent of the form of pair interactions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)