Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing the Computational Cost in Multi-objective Evolutionary Algorithms by Filtering Worthless Individuals (1401.5808v1)

Published 2 Jan 2014 in cs.NE

Abstract: The large number of exact fitness function evaluations makes evolutionary algorithms to have computational cost. In some real-world problems, reducing number of these evaluations is much more valuable even by increasing computational complexity and spending more time. To fulfill this target, we introduce an effective factor, in spite of applied factor in Adaptive Fuzzy Fitness Granulation with Non-dominated Sorting Genetic Algorithm-II, to filter out worthless individuals more precisely. Our proposed approach is compared with respect to Adaptive Fuzzy Fitness Granulation with Non-dominated Sorting Genetic Algorithm-II, using the Hyper volume and the Inverted Generational Distance performance measures. The proposed method is applied to 1 traditional and 1 state-of-the-art benchmarks with considering 3 different dimensions. From an average performance view, the results indicate that although decreasing the number of fitness evaluations leads to have performance reduction but it is not tangible compared to what we gain.

Citations (3)

Summary

We haven't generated a summary for this paper yet.