Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Random Walk on Random Walks (1401.4498v2)

Published 18 Jan 2014 in math.PR

Abstract: In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density $\rho \in (0,\infty)$. At each step the random walk performs a nearest-neighbour jump, moving to the right with probability $p_{\circ}$ when it is on a vacant site and probability $p_{\bullet}$ when it is on an occupied site. Assuming that $p_\circ \in (0,1)$ and $p_\bullet \neq \tfrac12$, we show that the position of the random walk satisfies a strong law of large numbers, a functional central limit theorem and a large deviation bound, provided $\rho$ is large enough. The proof is based on the construction of a renewal structure together with a multiscale renormalisation argument.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.