Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A stochastic model for Case-Based Reasoning (1401.0802v1)

Published 4 Jan 2014 in cs.AI and math.PR

Abstract: Case-Bsed Reasoning (CBR) is a recent theory for problem-solving and learning in computers and people.Broadly construed it is the process of solving new problems based on the solution of similar past problems. In the present paper we introduce an absorbing Markov chain on the main steps of the CBR process.In this way we succeed in obtaining the probabilities for the above process to be in a certain step at a certain phase of the solution of the corresponding problem, and a measure for the efficiency of a CBR system. Examples are given to illustrate our results.

Citations (9)

Summary

We haven't generated a summary for this paper yet.