2000 character limit reached
Computing the $L_1$ Geodesic Diameter and Center of a Simple Polygon in Linear Time (1312.3711v2)
Published 13 Dec 2013 in cs.CG
Abstract: In this paper, we show that the $L_1$ geodesic diameter and center of a simple polygon can be computed in linear time. For the purpose, we focus on revealing basic geometric properties of the $L_1$ geodesic balls, that is, the metric balls with respect to the $L_1$ geodesic distance. More specifically, in this paper we show that any family of $L_1$ geodesic balls in any simple polygon has Helly number two, and the $L_1$ geodesic center consists of midpoints of shortest paths between diametral pairs. These properties are crucial for our linear-time algorithms, and do not hold for the Euclidean case.