Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing the $L_1$ Geodesic Diameter and Center of a Simple Polygon in Linear Time (1312.3711v2)

Published 13 Dec 2013 in cs.CG

Abstract: In this paper, we show that the $L_1$ geodesic diameter and center of a simple polygon can be computed in linear time. For the purpose, we focus on revealing basic geometric properties of the $L_1$ geodesic balls, that is, the metric balls with respect to the $L_1$ geodesic distance. More specifically, in this paper we show that any family of $L_1$ geodesic balls in any simple polygon has Helly number two, and the $L_1$ geodesic center consists of midpoints of shortest paths between diametral pairs. These properties are crucial for our linear-time algorithms, and do not hold for the Euclidean case.

Citations (14)

Summary

We haven't generated a summary for this paper yet.