The Geodesic Diameter of Polygonal Domains
Abstract: This paper studies the geodesic diameter of polygonal domains having h holes and n corners. For simple polygons (i.e., h = 0), the geodesic diameter is determined by a pair of corners of a given polygon and can be computed in linear time, as known by Hershberger and Suri. For general polygonal domains with h >= 1, however, no algorithm for computing the geodesic diameter was known prior to this paper. In this paper, we present the first algorithms that compute the geodesic diameter of a given polygonal domain in worst-case time O(n7.73) or O(n7 (log n + h)). The main difficulty unlike the simple polygon case relies on the following observation revealed in this paper: two interior points can determine the geodesic diameter and in that case there exist at least five distinct shortest paths between the two.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.