Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Noncommutative Geometry and dynamical models on U(u(2)) background (1311.6231v2)

Published 25 Nov 2013 in math.QA

Abstract: In our previous publications we have introduced a differential calculus on the algebra $U(gl(m))$ based on a new form of the Leibniz rule which differs from that usually employed in Noncommutative Geometry. This differential calculus includes partial derivatives in generators of the algebra $U(gl(m))$ and their differentials. The orresponding differential algebra $\Omega(U(gl(m)))$ is a deformation of the commutative algebra $\Omega({\rm Sym}(gl(m)))$.A similar claim is valid for the Weyl algebra ${\cal W}(U(gl(m)))$ generated by the algebra $U(gl(m))$ and the mentioned partial derivatives. In the particular case $m=2$ we treat the compact form $U(u(2))$ of this algebra as a quantization of the Minkowski space algebra. Below we consider noncommutative versions of the Klein-Gordon equation and the Schr\"odinger equation for the hydrogen atom. We show that these quantum models become in a sense discrete.For the quantum Klein-Gordon model we get (under an assumption on momenta) an analog of the plane wave, for the quantum hydrogen atom model we find the first order corrections to the ground state energy and wave function.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube