Papers
Topics
Authors
Recent
2000 character limit reached

DinTucker: Scaling up Gaussian process models on multidimensional arrays with billions of elements

Published 12 Nov 2013 in cs.LG, cs.DC, and stat.ML | (1311.2663v5)

Abstract: Infinite Tucker Decomposition (InfTucker) and random function prior models, as nonparametric Bayesian models on infinite exchangeable arrays, are more powerful models than widely-used multilinear factorization methods including Tucker and PARAFAC decomposition, (partly) due to their capability of modeling nonlinear relationships between array elements. Despite their great predictive performance and sound theoretical foundations, they cannot handle massive data due to a prohibitively high training time. To overcome this limitation, we present Distributed Infinite Tucker (DINTUCKER), a large-scale nonlinear tensor decomposition algorithm on MAPREDUCE. While maintaining the predictive accuracy of InfTucker, it is scalable on massive data. DINTUCKER is based on a new hierarchical Bayesian model that enables local training of InfTucker on subarrays and information integration from all local training results. We use distributed stochastic gradient descent, coupled with variational inference, to train this model. We apply DINTUCKER to multidimensional arrays with billions of elements from applications in the "Read the Web" project (Carlson et al., 2010) and in information security and compare it with the state-of-the-art large-scale tensor decomposition method, GigaTensor. On both datasets, DINTUCKER achieves significantly higher prediction accuracy with less computational time.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.