Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Coinductive Equivalences for Higher-Order Probabilistic Functional Programs (Long Version) (1311.1722v1)

Published 7 Nov 2013 in cs.PL and cs.LO

Abstract: We study bisimulation and context equivalence in a probabilistic $\lambda$-calculus. The contributions of this paper are threefold. Firstly we show a technique for proving congruence of probabilistic applicative bisimilarity. While the technique follows Howe's method, some of the technicalities are quite different, relying on non-trivial "disentangling" properties for sets of real numbers. Secondly we show that, while bisimilarity is in general strictly finer than context equivalence, coincidence between the two relations is attained on pure $\lambda$-terms. The resulting equality is that induced by Levy-Longo trees, generally accepted as the finest extensional equivalence on pure $\lambda$-terms under a lazy regime. Finally, we derive a coinductive characterisation of context equivalence on the whole probabilistic language, via an extension in which terms akin to distributions may appear in redex position. Another motivation for the extension is that its operational semantics allows us to experiment with a different congruence technique, namely that of logical bisimilarity.

Citations (59)

Summary

We haven't generated a summary for this paper yet.