Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The theory of the double preparation: discerned and indiscerned particles (1311.1466v1)

Published 6 Nov 2013 in quant-ph, math-ph, math.MP, math.QA, and physics.class-ph

Abstract: In this paper we propose a deterministic and realistic quantum mechanics interpretation which may correspond to Louis de Broglie's "double solution theory". Louis de Broglie considers two solutions to the Schr\"odinger equation, a singular and physical wave u representing the particle (soliton wave) and a regular wave representing probability (statistical wave). We return to the idea of two solutions, but in the form of an interpretation of the wave function based on two different preparations of the quantum system. We demonstrate the necessity of this double interpretation when the particles are subjected to a semi-classical field by studying the convergence of the Schr\"odinger equation when the Planck constant tends to 0. For this convergence, we reexamine not only the foundations of quantum mechanics but also those of classical mechanics, and in particular two important paradox of classical mechanics: the interpretation of the principle of least action and the the Gibbs paradox. We find two very different convergences which depend on the preparation of the quantum particles: particles called indiscerned (prepared in the same way and whose initial density is regular, such as atomic beams) and particles called discerned (whose density is singular, such as coherent states). These results are based on the Minplus analysis, a new branch of mathematics that we have developed following Maslov, and on the Minplus path integral which is the analog in classical mechanics of the Feynman path integral in quantum mechanics. The indiscerned (or discerned) quantum particles converge to indiscerned (or discerned) classical particles and we deduce that the de Broglie-Bohm pilot wave is the correct interpretation for the indiscerned quantum particles (wave statistics) and the Schr\"odinger interpretation is the correct interpretation for discerned quantum particles (wave soliton). Finally, we show that this double interpretation can be extended to the non semi-classical case.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.