Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Zero-Error Capacity of a Class of Timing Channels (1311.1339v3)

Published 6 Nov 2013 in cs.IT, cs.DM, and math.IT

Abstract: We analyze the problem of zero-error communication through timing channels that can be interpreted as discrete-time queues with bounded waiting times. The channel model includes the following assumptions: 1) Time is slotted, 2) at most $ N $ "particles" are sent in each time slot, 3) every particle is delayed in the channel for a number of slots chosen randomly from the set $ {0, 1, \ldots, K} $, and 4) the particles are identical. It is shown that the zero-error capacity of this channel is $ \log r $, where $ r $ is the unique positive real root of the polynomial $ x{K+1} - x{K} - N $. Capacity-achieving codes are explicitly constructed, and a linear-time decoding algorithm for these codes devised. In the particular case $ N = 1 $, $ K = 1 $, the capacity is equal to $ \log \phi $, where $ \phi = (1 + \sqrt{5}) / 2 $ is the golden ratio, and the constructed codes give another interpretation of the Fibonacci sequence.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.