Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Ensemble Learning for Imbalanced Data Streams (1310.8004v1)

Published 30 Oct 2013 in cs.LG and stat.ML

Abstract: While both cost-sensitive learning and online learning have been studied extensively, the effort in simultaneously dealing with these two issues is limited. Aiming at this challenge task, a novel learning framework is proposed in this paper. The key idea is based on the fusion of online ensemble algorithms and the state of the art batch mode cost-sensitive bagging/boosting algorithms. Within this framework, two separately developed research areas are bridged together, and a batch of theoretically sound online cost-sensitive bagging and online cost-sensitive boosting algorithms are first proposed. Unlike other online cost-sensitive learning algorithms lacking theoretical analysis of asymptotic properties, the convergence of the proposed algorithms is guaranteed under certain conditions, and the experimental evidence with benchmark data sets also validates the effectiveness and efficiency of the proposed methods.

Citations (135)

Summary

We haven't generated a summary for this paper yet.