Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Anomaly Detection via Class-Imbalance Learning (1508.06717v1)

Published 27 Aug 2015 in cs.LG

Abstract: Anomaly detection is an important task in many real world applications such as fraud detection, suspicious activity detection, health care monitoring etc. In this paper, we tackle this problem from supervised learning perspective in online learning setting. We maximize well known \emph{Gmean} metric for class-imbalance learning in online learning framework. Specifically, we show that maximizing \emph{Gmean} is equivalent to minimizing a convex surrogate loss function and based on that we propose novel online learning algorithm for anomaly detection. We then show, by extensive experiments, that the performance of the proposed algorithm with respect to $sum$ metric is as good as a recently proposed Cost-Sensitive Online Classification(CSOC) algorithm for class-imbalance learning over various benchmarked data sets while keeping running time close to the perception algorithm. Our another conclusion is that other competitive online algorithms do not perform consistently over data sets of varying size. This shows the potential applicability of our proposed approach.

Citations (16)

Summary

We haven't generated a summary for this paper yet.