Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantized Stationary Control Policies in Markov Decision Processes (1310.5770v2)

Published 22 Oct 2013 in math.OC and cs.SY

Abstract: For a large class of Markov Decision Processes, stationary (possibly randomized) policies are globally optimal. However, in Borel state and action spaces, the computation and implementation of even such stationary policies are known to be prohibitive. In addition, networked control applications require remote controllers to transmit action commands to an actuator with low information rate. These two problems motivate the study of approximating optimal policies by quantized (discretized) policies. To this end, we introduce deterministic stationary quantizer policies and show that such policies can approximate optimal deterministic stationary policies with arbitrary precision under mild technical conditions, thus demonstrating that one can search for $\varepsilon$-optimal policies within the class of quantized control policies. We also derive explicit bounds on the approximation error in terms of the rate of the approximating quantizers. We extend all these approximation results to randomized policies. These findings pave the way toward applications in optimal design of networked control systems where controller actions need to be quantized, as well as for new computational methods for generating approximately optimal decision policies in general (Polish) state and action spaces for both discounted cost and average cost.

Citations (4)

Summary

We haven't generated a summary for this paper yet.