Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 53 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Multiple steadily translating bubbles in a Hele-Shaw channel (1310.4861v1)

Published 17 Oct 2013 in physics.flu-dyn, math-ph, math.MP, and nlin.PS

Abstract: Analytical solutions are constructed for an assembly of any finite number of bubbles in steady motion in a Hele-Shaw channel. The solutions are given in the form of a conformal mapping from a bounded multiply connected circular domain to the flow region exterior to the bubbles. The mapping is written as the sum of two analytic functions---corresponding to the complex potentials in the laboratory and co-moving frames---that map the circular domain onto respective degenerate polygonal domains. These functions are obtained using the generalised Schwarz-Christoffel formula for multiply connected domains in terms of the Schottky-Klein prime function. Our solutions are very general in that no symmetry assumption concerning the geometrical disposition of the bubbles is made. Several examples for various bubble configurations are discussed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube