Subsectors, Dynkin Diagrams and New Generalised Geometries (1310.4196v2)
Abstract: We examine how generalised geometries can be associated with a labelled Dynkin diagram built around a gravity line. We present a series of new generalised geometries based on the groups $\mathit{Spin}(d,d)\times\mathbb{R}+$ for which the generalised tangent space transforms in a spinor representation of the group. In low dimensions these all appear in subsectors of maximal supergravity theories. The case $d=8$ provides a geometry for eight-dimensional backgrounds of M theory with only seven-form flux, which have not been included in any previous geometric construction. This geometry is also one of a series of "half-exceptional" geometries, which "geometrise" a six-form gauge field. In the appendix, we consider examples of other algebras appearing in gravitational theories and give a method to derive the Dynkin labels for the "section condition" in general. We argue that generalised geometry can describe restrictions and subsectors of many gravitational theories.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.