Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Social Links for New Users across Aligned Heterogeneous Social Networks (1310.3492v1)

Published 13 Oct 2013 in cs.SI, cs.LG, and physics.soc-ph

Abstract: Online social networks have gained great success in recent years and many of them involve multiple kinds of nodes and complex relationships. Among these relationships, social links among users are of great importance. Many existing link prediction methods focus on predicting social links that will appear in the future among all users based upon a snapshot of the social network. In real-world social networks, many new users are joining in the service every day. Predicting links for new users are more important. Different from conventional link prediction problems, link prediction for new users are more challenging due to the following reasons: (1) differences in information distributions between new users and the existing active users (i.e., old users); (2) lack of information from the new users in the network. We propose a link prediction method called SCAN-PS (Supervised Cross Aligned Networks link prediction with Personalized Sampling), to solve the link prediction problem for new users with information transferred from both the existing active users in the target network and other source networks through aligned accounts. We proposed a within-target-network personalized sampling method to process the existing active users' information in order to accommodate the differences in information distributions before the intra-network knowledge transfer. SCAN-PS can also exploit information in other source networks, where the user accounts are aligned with the target network. In this way, SCAN-PS could solve the cold start problem when information of these new users is total absent in the target network.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jiawei Zhang (529 papers)
  2. Xiangnan Kong (35 papers)
  3. Philip S. Yu (592 papers)
Citations (117)

Summary

We haven't generated a summary for this paper yet.