Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Efficient Estimation of Highly Structured Posteriors of Gravitational-Wave Signals with Markov-Chain Monte Carlo (1309.7709v1)

Published 30 Sep 2013 in astro-ph.IM and astro-ph.CO

Abstract: We introduce a new Markov-Chain Monte Carlo (MCMC) approach designed for efficient sampling of highly correlated and multimodal posteriors. Parallel tempering, though effective, is a costly technique for sampling such posteriors. Our approach minimizes the use of parallel tempering, only using it for a short time to tune a new jump proposal. For complex posteriors we find efficiency improvements up to a factor of ~13. The estimation of parameters of gravitational-wave signals measured by ground-based detectors is currently done through Bayesian inference with MCMC one of the leading sampling methods. Posteriors for these signals are typically multimodal with strong non-linear correlations, making sampling difficult. As we enter the advanced-detector era, improved sensitivities and wider bandwidths will drastically increase the computational cost of analyses, demanding more efficient search algorithms to meet these challenges.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.