Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Power and Antenna Selection Optimization in Large Cloud Radio Access Networks (1309.7540v2)

Published 29 Sep 2013 in cs.IT and math.IT

Abstract: Large multiple-input multiple-output (MIMO) networks promise high energy efficiency, i.e., much less power is required to achieve the same capacity compared to the conventional MIMO networks if perfect channel state information (CSI) is available at the transmitter. However, in such networks, huge overhead is required to obtain full CSI especially for Frequency-Division Duplex (FDD) systems. To reduce overhead, we propose a downlink antenna selection scheme, which selects S antennas from M>S transmit antennas based on the large scale fading to serve K\leq S users in large distributed MIMO networks employing regularized zero-forcing (RZF) precoding. In particular, we study the joint optimization of antenna selection, regularization factor, and power allocation to maximize the average weighted sum-rate. This is a mixed combinatorial and non-convex problem whose objective and constraints have no closed-form expressions. We apply random matrix theory to derive asymptotically accurate expressions for the objective and constraints. As such, the joint optimization problem is decomposed into subproblems, each of which is solved by an efficient algorithm. In addition, we derive structural solutions for some special cases and show that the capacity of very large distributed MIMO networks scales as O\left(K\textrm{log}M\right) when M\rightarrow\infty with K,S fixed. Simulations show that the proposed scheme achieves significant performance gain over various baselines.

Citations (84)

Summary

We haven't generated a summary for this paper yet.