Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Evaluating Link-Based Techniques for Detecting Fake Pharmacy Websites (1309.7266v1)

Published 27 Sep 2013 in cs.CY and cs.LG

Abstract: Fake online pharmacies have become increasingly pervasive, constituting over 90% of online pharmacy websites. There is a need for fake website detection techniques capable of identifying fake online pharmacy websites with a high degree of accuracy. In this study, we compared several well-known link-based detection techniques on a large-scale test bed with the hyperlink graph encompassing over 80 million links between 15.5 million web pages, including 1.2 million known legitimate and fake pharmacy pages. We found that the QoC and QoL class propagation algorithms achieved an accuracy of over 90% on our dataset. The results revealed that algorithms that incorporate dual class propagation as well as inlink and outlink information, on page-level or site-level graphs, are better suited for detecting fake pharmacy websites. In addition, site-level analysis yielded significantly better results than page-level analysis for most algorithms evaluated.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.