Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 188 tok/s Pro
2000 character limit reached

Crepant resolutions and open strings (1309.4438v3)

Published 17 Sep 2013 in math.AG, hep-th, and math.SG

Abstract: We formulate a Crepant Resolution Correspondence for open Gromov-Witten invariants (OCRC) of toric Lagrangian branes inside Calabi-Yau 3-orbifolds by encoding the open theories into sections of Givental's symplectic vector space. The correspondence can be phrased as the identification of these sections via a linear morphism of Givental spaces. We deduce from this a Bryan-Graber-type statement for disk invariants, which we extend to arbitrary topologies in the Hard Lefschetz case. Motivated by ideas of Iritani, Coates-Corti-Iritani-Tseng and Ruan, we furthermore propose 1) a general form of the morphism entering the OCRC, which arises from a geometric correspondence between equivariant K-groups, and 2) an all-genus version of the OCRC for Hard Lefschetz targets. We provide a complete proof of both statements in the case of minimal resolutions of threefold An singularities; as a necessary step of the proof we establish the all-genus closed Crepant Resolution Conjecture with descendents in its strongest form for this class of examples. Our methods rely on a new description of the quantum D-modules underlying the equivariant Gromov-Witten theory of this family of targets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.