Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Low temperature asymptotics for Quasi-Stationary Distributions in a bounded domain (1309.3898v1)

Published 16 Sep 2013 in math.AP

Abstract: We analyze the low temperature asymptotics of the quasi-stationary distribution associated with the overdamped Langevin dynamics (a.k.a. the Einstein-Smoluchowski diffusion equation) in a bounded domain. This analysis is useful to rigorously prove the consistency of an algorithm used in molecular dynamics (the hyperdynamics), in the small temperature regime. More precisely, we show that the algorithm is exact in terms of state-to-state dynamics up to exponentially small factor in the limit of small temperature. The proof is based on the asymptotic spectral analysis of associated Dirichlet and Neumann realizations of Witten Laplacians. In order to cover a reasonably large range of applications, the usual assumptions that the energy landscape is a Morse function has been relaxed as much as possible.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.