Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analytical Framework of LDGM-based Iterative Quantization with Decimation (1309.2870v1)

Published 11 Sep 2013 in cs.IT and math.IT

Abstract: While iterative quantizers based on low-density generator-matrix (LDGM) codes have been shown to be able to achieve near-ideal distortion performance with comparatively moderate block length and computational complexity requirements, their analysis remains difficult due to the presence of decimation steps. In this paper, considering the use of LDGM-based quantizers in a class of symmetric source coding problems, with the alphabet being either binary or non-binary, it is proved rigorously that, as long as the degree distribution satisfies certain conditions that can be evaluated with density evolution (DE), the belief propagation (BP) marginals used in the decimation step have vanishing mean-square error compared to the exact marginals when the block length and iteration count goes to infinity, which potentially allows near-ideal distortion performances to be achieved. This provides a sound theoretical basis for the degree distribution optimization methods previously proposed in the literature and already found to be effective in practice.

Summary

We haven't generated a summary for this paper yet.